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FOREWORD

This report is the sixth in a series of quarterly progress reports under
Contract NSR 22-009-106 between the National Aeronautics and Space Adminis-
tration and Lincoln Laboratory. Previous quarterly progress reports are re-
ferred to as QPR (1966:1) through QPR (1967:1). It is intended that this will be
the last quarterly progress report; the final project report will be issued on
31 August 1967.

Section 1 of this report describes the progress which has been made in the
mapping at 3.8cm. Most of the area within 10° of the lunar equator has now
been observed, and much of the data have been converted to intensity maps.
Section II discusses some further studies of the supersynthesis technique,
primarily in anticipation of its use for future polarization studies at 23-cm

wavelength. Section III describes advances in the 8-mm radar observations.
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I. HIGH-RESOLUTION 3.8~-CM REFLECTIVITY MAPPING

At the end of the current reporting period, the entire region of the lunar surface lying
between 10 ° latitude north and south and 70 ° longitude east and west had been observed at 3.8 cm
using the Haystack radar. In addition, several small areas lying outside this region of primary
concern had been observed because of some special interest connected with them. The Fourier
analysis of these observations has been largely completed, but the final task of producing maps
has been delayed so that all the maps will be of identical format.

A number of improvements in the overall system have been introduced in the last three
months. In the mapping program, it is now possible to accommodate a run having simultaneously
200 samples in delay and 256 in Doppler. The display program has also been modified to present
an optical image having 200 by 200 resolution elements. The combination thus permits retention
of the full data content of a given run under all conditions, and maximizes the operating efficiency.
An example of data taken, processed, and displayed using these new programs is shown in Fig. 1.

A second improvement has been the construction of filters to permit the use of 5-psec
transmitted pulses and sampling intervals. The short pulses were not used as part of the broad
survey of the equatorial regions except in several of the observations taken near the center of
the disk where the resolution otherwise would have been very poor. However, they have been
used to study the eight most recently selected possible Apollo lunar landing sites in as much
detail as possible. A mapping run using the 5-usec resolution has also been taken of the crater
Tycho and is shown in Fig. 2. Figures 1 and 2 were obtained within an hour of each other on
21 March 1967 using 10- and 5-usec delay resolutions, respectively, so that a direct compari-
son of the improvement may be made. Comparison may also be made with Fig. 6 of QPR (1967:1)
which was taken on 21 December 1966. Because of a substantial difference in the location of the
subradar point on the two dates, the improvement afforded by the shorter pulse was not as dra-
matic as it would be otherwise. Nevertheless, the resolution maintained in Fig. 2 is only slightly
worse than 1 km.

Finally, the ability to map the output in Mercator projection has been added. Thus, after
suitable enlargement it should be relatively easy from the final radar maps to construct overlays
which will permit direct comparison with the corresponding Lunar Aeronautical Chart. It is
expected that the option of mapping in Lambert projection also will be included shortly.

Figure 3 is included to demonstrate the high resolution of the radar mapping technique for
regions near the lunar limb. The data obtained in this region are particularly useful, of course,
because of the difficulty in obtaining ground-based optical measurements of equivalent resolution.
Other than to test the method in this region of the lunar surface, however, no systematic mapping

is presently planned.




Fig. 1. Lunar surface in vicinity of crater Tycho
using 10-psec resolution as mapped by Haystack
radar at 3.8-cm wavelength. Coordinates used
here are selenographic Cartesian, normalized to
lunar radius. Thus, a small grid square is 0.02
by 0.02 and resolution is 0.001 by 0.001 or ap-

proximately 2 km.
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Fig. 2. Radar map of crater Tycho using 5-psec
resolution taken shortly after map shown in Fig.1.
Here, a small grid square is 0.01 by 0.01 lunar
radius units and resolution is 0.0005 by 0.0005 or
approximately 1 km.

LATITUDE

—0.65

-0.10 -0.15
LONGITUDE

Fig. 3. Radar map of a region near eastern equato-
rial limb of moon in Mercator projection. Delay
resolution is 10 psec or approximately 1.5 km on
surface.
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II. LIMITATIONS OF SUPERSYNTHESIS TECHNIQUE
A. Introduction

In QPR (1967:1), it was demonstrated that coarse resolution maps can be constructed by
combining frequency spectra obtained as the apparent libration axis of the moon rotates through
180 ° or more. It was suggested that the technique be applied at 23 cm to study the depolarization
properties of distinctive features, and that the technique might prove helpful in constructing maps
of the area near the subradar points even at 3.8 cm when the delay-Doppler technique develops
difficulties.

Since that time, studies have been conducted to establish the limitations of the supersynthesis
technique to determine whether it might offer the delay-Doppler technique any competition, even
in the cases where beam resolution is available. Both systematic and random errors have been

considered.
B. Systematic Errors

In QPR (1967:1), we showed that the filtering of the observed data with a power frequency
response g(x) and the subsequent combination of the data — observed for all angles ¥ between
the apparent libration axis and the true lunar axis — could be interpreted as a two-dimensional

convolution of the true distribution f(x, y) and a function G(x, y).

P(&;m) = SS‘ dxdy flx,y) Glx— ¢, y —n) (1)

where G{x,y) is defined by T

o 400 )
Glx,y) = 2r g rdr S‘ dg glt) Jo (Zﬁr'\lxz + yz) e-2771r§ . (2)

[e] -00

This is the complex conjugate of the result of QPR (1967:1) and in this form appears to conform
better to standard practice.

This filtering of the strip distribution is equivalent to multiplying the correlation function
by some weight function which de-emphasizes its values for large arguments u2 + vz. Let us
denote this weight function by h(s) and determine its relation to the smoothing function G{x, y).
The modified correlation function is pa(s cosy; s siny) = p(s cosy; s siny) h{s). This results

in an expression identical to Eq. (1) except that the smoothing function is now of the form
o0
Gix,y) = 2rm S rdr JO(Z‘frr'\sz + yz)h(r) ) (3)
o

Comparison of Eqgs. (2) and (3) shows that the multiplying function h(r) is the Fourier transform
of the filter function g(p).
As an example, we reconsider the Gaussian filter function of QPR (1967:1) where the result-

ing G(x, y) was quoted incorrectly because of a propagation of the 2r-error noted above. Thus,

glp) = exp [—pZ/ZAg] (4)

t Note the 2w in the argument of the Bessel function which was inadvertently omitted in QPR (1967:1).
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gives
G(x,y) = exp [—(x2 + yz)/ZAgZ]/ZwAé (5)

where Ag is the half-width of the filter.
In mapping the lunar surface as described, the filter function is given by

sin [1r(p/Af)] z

R (@

Unfortunately, we have not yet been able to determine an analytic expression for the correspond-
ing G(x,y). However, reasonable estimates of equivalent resolution can be made by appropriate
comparison with Eq. (5).

Next, it is necessary to further explore the effect of only knowing the strip distribution or
the visibility function at discrete values of the angle . For this purpose, we imagine that the

visibility is known at N equidistant values of ¥, viz.,
P = WN n n=1N . (7

In addition, the complex visibility is de-emphasized at large arguments as just described. In

the integral for the apparent power distribution, we therefore substitute a two-dimensional cor-

relation function modified in the following manner:
N-1

pa(s cosy; s siny) = Z 6y — % n) h(s) p(s cosy; s siny) . (8)

n=0

Substituting Eq. {8) into that integral gives

N-1

Pa(x,y) = Z S‘O sds {p(s cos Y s sin zpn) exp [2ris(x cos ¥, ty sin z,bn)]
n=0

+ p*(s cos ¥ s sin d)n) exp [—2rwis(x cos z/)n + y sin d)n)} h{s)
N-1
= Sg dg'dn' P(ehn) ),
n=0

X S\ sds his) 2 cos {2rs [(x — ") cos zpn +(y —n") sinwn]} . (9)
(o}

In this case, therefore, the two-dimensional smoothing function becomes
N-1
0
G(x,y) = 2 Z S s - ds h(s) cos [27s(x cos A sin zl)n)] . (10)
o
n=0

The particular example considered above, that of a Gaussian filter in the strip distribution,

corresponds to

2

h(s) = exp [—27°A %s?

gzs 1. (11)




Substituting this into Eq. (10) gives

s 2
-as
Glx,y) = 2 Z So sds e COS(ans) (12)
where
a = ZWZAZ
g
X, = m(x cosy_+y sin z/)n)

Equation (12) can be integrated and givesT

xn/\ﬁi +2
G(x,y) = Z 5 1—2Fexp[—x /a S e dt . (13)

2 a o)

The function f(y) = 1 — 2y e—y2 j(;y et2 dt is shown in Fig. 4. We see from this form of G(x, y)
that the contribution to G(x, y} from a particular run represented by the angle wm is unity when
X = 0, i.e., along a direction perpendicular to the baseline of run m. From this, it follows
that the sidelobe rejection is directly proportional to the number of runs, or to the number of

discrete baseline directions, as also noted in a simpler example in QPR (1967:1).

y
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Fig. 4. Plot of function fly).
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Next consider the even more realistic case when the angle ¢ is allowed to vary continuously
during each observation so that the value of p{u; v), which is assigned to a single angle Yo in
actual fact arises as a mean over a certain range of angles from ¢ _ — Ay/2 to ¢t AY/2. This
form of averaging or smearing of the data occurs when the complex visibility is computed as an
autocorrelation function and the instantaneous rotation axis of the target is changing direction,
as in the case of lunar mapping.

When the smearing of the visibility function is caused by a rotation of the axis of the target,

the modified visibility function for a particular run m becomes

T Handbook of Mathematical Functions, edited by M. Abramowitz and 1. A. Stegun, Natl. Bur. Stds. Applied Math.
Series 55 (1964).




b HAY /2

1
S‘S P(ehn') detdn' — dyp
AV Yy -au/2

K

pylscosy : s sin )

X exp [-27is(¢' cosy + 7' siny)]

sin {rs(¢' siny __ —n' cosy ) AP)
gg P(t';n'") dg' dn! [ o -

st - AY(g' sing  —n' cosy )

X exp [—27is(£' cos bt n' sin zpm)] . (14)

Introducing

»
t

m [(¢' — x') cos bt (n' —y" Sinwn]
vy =w(&' sinzpn—n' cos zpn) A

one obtains

N-1
=) y y
Glx—¢% y—n'; &£,n'") = E y—ir; go ds h(s) {sin [2s(xn + _22)] — sin [Zs(xn——zg)]} (15a)
n=0

and the smearing of the true distribution is no longer a true convolution. To second order in Yo

N-1
G=2 ) S‘ sds - h(s) - cos(2x_s) (1 —s%y°/6) . (15b)
n=0 °

The condition that the angular smearing of the correlation function is not to influence the data
appreciably corresponds to requiring SYp, < 1 for all values of s for which h(s) is not close to
zero. In the Gaussian case, h(s) is close to zero whenever s > 1/r - Ag'\/—f. If ro measured in
the same units as Ag denotes the largest value of X + y‘2 in P(x, y) for which a signal is present,

we conclude that the smearing is important whenever

sy <NZag/r, (16)
Comparison of the filter functions (4) and (6) shows that

A = A

¢ f%=0.955A

£ - (17)

As explained in QPR (1967:1), the width of the actual analyzing filter was Af = r0/25 where ro

now is the lunar radius. Substitution of this into condition (16) shows that
Ay <NZ - 0.,955/25 = 0,054 radian = 3,1° (18)

This is certainly not fulfilled in the runs analyzed in QPR (1967:1), where Ay in some instances
was 4°. It may be expected that the condition (16) can also be applied as a measure of the im-
portance of the angular sampling if Ay is interpreted as the angle between the libration axes on
consecutive runs. In the data analyzed, this Ay was as large as 10°, which seems to explain
why we had to apply smoothing to the data in order to obtain a reasonable map. The contour map
presented in QPR (1967:1) as Fig. 4 was obtained basically with only about 17 filters across the
diameter of the moon. This sets the corresponding limit on the right-hand side of Eq. (18) at




9.3°, and satisfies the "smearing condition" as well as the "angular jump" conditions nearly
throughout.

It should be added that higher resolution mapping can be achieved near the center of the
moon. If we concentrate our attention only on the central disk to r,= 1, then condition (16) can
be satisfied with larger values of Ayp. We reanalyzed the data of 27 and 28 December 1966 with
essentially 31 filters across the lunar diameter, and the result is shown in Fig.5. The sidelobe
level along the edges is very prominent, as the above analysis predicts. However, it appears
that the resolution is considerably increased near the center. It is particularly interesting to
note how Copernicus has emerged as a distinct separate feature on this scale [see Fig.5 and
compare with Fig. 4 in QPR (1967:1)].

C. Random Errors

Random errors in the estimate of the reflectivity in the maps arise either because there is
an appreciable amount of random additive noise superimposed on the signal, or because the
signal itself fades so that the mean signal power even in the absence of additive noise may only
be determined after a certain amount of signal integration. For most radar astronomy targets,
except for the moon, additive noise is of greatest importance. When the most sensitive radar
systems are applied to the study of the moon, however, the returns are so strong that additive
noise is not the limiting factor. For this reason, we shall discuss the latter case.

It is difficult to give a completely general discussion of the computation of the random errors
covering all experimental situations. Thus, we shall consider the particular experimental situa-
tion which arises in lunar observations where as an approximation one may regard the projection
of the instantaneous apparent axis to rotate at a constant angular velocity §. We shall also as-
sume that the rotation rate l?ﬂ (and hence the limb-Doppler) remains constant. The observation
will be assumed to be carried out continuously so that problems in connection with discrete
angular sampling do not arise. (The experiment is therefore highly idealized.) The angle
must be replaced by §t, where t is the time, and the variable s [e.g., see Eq.(8)] will be re-
placed by ZTQH/)\, where 7 is the time shift in the correlation function and € I is the projection
of the apparent angular velocity on the x,y plane. For the time-varying autocorrelation function

at time t and delay 7, one obtains
plr; t) = ‘S‘\S‘ dx dy P(x;y) exp [~4ni % QH {x [cos ut - (§7/2) — sinyt]

+y [singt - (¢7/2) + cosyt]}] . (19)
As explained previously, this ideal correlation function must be multiplied by a weight function
h{r) in order to achieve some filtering of the data. Furthermore, we cannot arrive at an esti-
mate of the instantaneous correlation function at time t. In practice, we must make an estimate
by taking a time average. Therefore, the correlation function available for transformation will
be a random variable having a mean value given by

+o0
P (75 t) = hir) S‘ plr, t") gt —t") dt (20)

where g(t) is a time-averaging function. The estimate of the filtered brightness over the target

disk is
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Fig. 5. Contour map of lunar reflectivity, depolarized circular component, 23-cm wavelength. Contours
labeled in relative power. Filt =0.132.




Pm(x; y) =« S‘S‘ dr dt Tpm(T; t) exp[4ri =~ @ H(X cos Yt + y sinyt)] (21)

>=

where « is a constant of proportionality. Here, p (7;1) is to be considered the mean value of

the random variable prln(-r; t); hence,

(r;t) = {pl(r; )

m m

The deviation or uncertainty in Pm(x; y) is given by

GPIin(x, y) = « S‘S dr dt ‘r(prin - pm) exp [4ni -}\ Q ”(x cos Yt + y sinyt)) (22)

and the mean-square uncertainty becomes
2 i 2 2 i ikt
éPm(x,y) = <6Pr1n(x,y) > =« gggg dr dt dr' dt! ((pmprln > — pmp—“r-“-r'l) TT!
4ri
X exp {%1 Q [ [T{x cos 4t +y sinyt) — 7'(x cos Pt' + y sinyt')]} (23)

the primed functions having arguments 7' and t'. In order to compute the mean of the product

of "instantaneous correlation functions" appearing under the integral sign, we proceed as follows:

<prir:1::(7';t') prin(T;t» = h(7) h{r") gg di' dt' glt —t") glt' —t'')

. <pi(‘r;t") pi*(‘r';t”‘)> . (24)

Since the random variable pl(T; t) is defined as a simple product of two random variables which
are nearly always Gaussian, we may express the mean of the product in Eq. (24) in terms of

products of means

<pi(7'; t") pi*(T';t"')> = <f*(t” + .,-) f(t") f(tlll + T') f;::(tvn)>

K

<f*(t” + 1) f(t”)> <f(1;'” + T‘) f:::(t!!|)> + <f*(t” + 1) f(t‘” + T')>
<f(t") f*(t")>

p(T;t") p*(T‘;t"') + p*(T' —T + gt —t”; '+ T)
X p(tlll -t t'Y) . (25)
The former of these two terms will only serve to cancel the product of the means in Eq.(23) and

there remains

rSPm(x,y)2 = KZ S‘ S dr dr' dtdt' 77! exp{zl%i QH [T{x cos ¥t + y sin Pt)

—7'(x cos Pt' +y sinyt')} |} X h(r) h(r") SS dtrrdat' glt —t'")

Xg(t'-—t”') p*(T'——T+t"’—t”; t"'\"T) p(tlll_tll; t") . (26)

This expression is so complex that general conclusions cannot easily be drawn regarding the
relative uncertainty in the reflectivity determinations. Under these circumstances, the best
one can accomplish apparently is to construct an example which is simple enough for the compu-
tations to be carried through, yet complex enough to convey information of general validity. It

appears that the following distribution is of such a nature:



2
P(x;y) = expl—(x* + y)/2a°] (27)
where a is a measure of the extent of the moon. From Eg.(19), it follows that
2 2
p(rit) = exp (—2r2(r1 )% (1 + Wr/2))) mexp-2n’(ri)?) (28)

Here we have introduced f, = 2aQ H/)\, which corresponds to the "limb-Doppler" of a planet of

L
radius a. Since p(7;t) is not dependent on t, the convolution with g{t —t') in Eq. (20) has no

effect. Using a Gaussian weight factor h(7) as in Eq. (11), one obtains

p (1, 8) = exp {—2nl(t, 1% [1+ (Ag/fL)Z]} =TT (29)

Substituting this into Eq. (21) gives

1l

>

o 2 2 pm
Pm(x; y)=£ g Tdr d_’B 4 g dg exp [4ri QH(x cos g ty sing)}
¥ Yo o

00 2 2
= 7T—V Tdr e—B T Jo(471'\/x2 + y2

Q)
5 % I

>4

{ x2 + yz
= - £ exp i— . (30)
amjil (1 + (Agz/fi)] 2a’ 1+ (Agz/fﬁ)]

The mean observed distribution is therefore seen to closely resemble the original distribution
as long as Ag << fL'
In order to compute the uncertainty 6Pm(x, y), we have to make the additional assumption

that

1 2 2
glt—t") = —— exp[—{t -tV /2T"] . (31)
N2rw TO °

With this assumption we find, after some considerable labor, that

it 1

B >~ P = expl-a®(r% + 7)) - expl—(8/2) A7)

34 Z(ZBTO)Z

2

2+ (28T)

- exp {— 12[ 02] (1:—‘('—A—2T)2 (32)
ZTO 3+ Z(ZBTO)

where AT = 7' — 1, and a = N2r7 Ag. We note that BTO =21 fL . To. The duration of a fading
cycle is typically fl:i. Since TO must include a great many fading cycles, we conclude that
BTO >>1. For the same reason, Ar can be ignored in the last exponential factor by putting

AT = 0. We also note that o << B for reasonable resolution to be obtained. It follows that, in

the first exponential factor one may put 7 = 7'. With these simplifications, one obtains

2
P 2 1 2
Kplplt> —p_prim —1— expl-za®r? - E2 Ar® - — At (33)

ZBI: o

with At = t' —t.
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When substituting into Eq. (23), we expand the exponent of the phase factor to first order in

At about At = 0 and integrate with respect to t, The result is

2 o 2, 2 oo 2. 2
— e g Tdr - e ¢ 2t S\ dlAT) (1 + AT) - e_B art/2
o

NZ ¥BT, -7
too -at?/aT? —
5 dAt) - e .3, 12nt, Zar® + c2Gan?) = 6P _(r)? (34)

where r = 'sz + yz. Since this is not easily integrable, we have to be content to find an upper
bound to <5Pm(r)2 by computing the triple integral for r = 0 only. Making some further approxima-

tions which are all compatible with previous assumptions, we finally obtain

2 1 ,m3/2 _ «
PL<g gV —5—s - (35)
" - «a
Substitution of § = 7/T, where T is the total time of observation, and computation of the relative

uncertainty gives forr = 0

2 % " Ta (36)
g

We note that this is independent of transmitter power because of the absence of additive
noise. The uncertainty (‘SPm/Pm is inversely proportional to the square root of observation time
multiplied by the smoothing filter bandwidth, and directly proportional to linear resolution. For
a given resolution, we see that the uncertainty is inversely proportional to the square root of the
operating frequency since, for a given resolution, one must make A _~ operating frequency.

Suppose we desire to obtain reflectivity data to an accuracy of zSPm/Pm = 0.25. Let us
determine, according to Eq.(36), to what resolution we can map. Taking 12 hours as a typical
observing time and the limb-Doppler to be 10 Hz, one obtains

A

f_g > 2.54 « 10
L

-2

which corresponds to a resolution of 43 km on the moon. This appears to be the ultimate resolu-
tion which the method can yield at 23 cm using the Millstone antenna. At 3.8 cm where the narrow
antenna beam can be used to effectively reduce the apparent size of the moon, the achievable
resolution for the same relative uncertainty should be about one-tenth of this, i.e., approximately
5km. In view of the excellent resolution achieved — even near the subradar point — in the delay-
Doppler technique at 3.8 cm using the Haystack antenna, it does not appear worthwhile to imple-
ment the supersynthesis technique for high-resolution mapping of the moon at 3.8 cm. However,

for further detailed polarization studies of the moon at 23 cm, the method appears to be valuable.

II. PROGRESS WITH 8-MM RADAR SYSTEM

During this quarter, the 1-kW 35-GHz klystron amplifier tube was delivered and is now
operating on the bench at 1.2kW. The transmitter assembly for this high-power tube is com-

pleted and is operating smoothly. The control logic and remote monitoring equipment are nearly

ii




finished. A thermal detuning problem, which at the moment prevents stable operation, has been
encountered but is not expected to impede the progress. The oscillator and multiplier chain for
the tube also seem to work satisfactorily.

Because of delay in delivery of the kilowatt tube, considerable time has been spent on the
50-W transmitter. The original method of phase-locking the 35-GHz klystron oscillator in this
transmitter has proven to be excessively inconvenient. Now the 50-W tube can be phase-locked
provided the reference frequency is correct. The tube will only oscillate at a frequency deter-
mined by uncontrollable internal tube parameters. For this reason, the reference frequency
has had to be supplied by means of a spectrum of crystals. A different and much more conven-
ient reference frequency synthesizer has now been implemented and is currently being installed
in the radar cab. Its primary purpose is to provide a reference frequency which can be readily
adjusted so that the 35-GHz klystron is locked at a frequency at which it oscillates strongly.

The remainder of the millimeter effort has progressed in a more satisfying manner. The
new rate drives for pointing the antenna are strikingly successful. Installation of encoders on
the azimuth and elevation shafts is nearly completed. The pointing and Doppler data are now
being supplied by the CDC-3300 Haystack computer on a regular schedule and in convenient form.

Returns from the moon have been observed during this reporting period but, to date, the
Doppler correction has not been working satisfactorily. With the new frequency control system
described above, this difficulty is expected to disappear so that reflectivity data may be obtained
using the 50-W tube.
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